Stability of G-frames
نویسندگان
چکیده
G-frames are natural generalizations of frames which cover many other recent generalizations of frames, e.g., bounded quasi-projectors, frames of subspaces, outer frames, oblique frames, pseudo-frames and a class of timefrequency localization operators. Moreover, it was shown that g-frames are equivalent to stable space splittings. In this paper, we study the stability of g-frames. We first present some properties for g-Bessel sequences. Then we prove that g-frames are stable under small perturbations. We also study the stability of dual g-frames.
منابع مشابه
On Sum and Stability of Continuous $G$-Frames
In this paper, we give some conditions under which the finite sum of continuous $g$-frames is again a continuous $g$-frame. We give necessary and sufficient conditions for the continuous $g$-frames $Lambda=left{Lambda_w in Bleft(H,K_wright): win Omegaright}$ and $Gamma=left{Gamma_w in Bleft(H,K_wright): win Omegaright}$ and operators $U$ and $V$ on $H$ such that $Lambda U+Gamma V={Lambda_w U+Ga...
متن کاملDuality of $g$-Bessel sequences and some results about RIP $g$-frames
In this paper, first we develop the duality concept for $g$-Bessel sequences and Bessel fusion sequences in Hilbert spaces. We obtain some results about dual, pseudo-dual and approximate dual of frames and fusion frames. We also expand every $g$-Bessel sequence to a frame by summing some elements. We define the restricted isometry property for $g$-frames and generalize some resu...
متن کاملDuals and approximate duals of g-frames in Hilbert spaces
In this paper we get some results and applications for duals and approximate duals of g-frames in Hilbert spaces. In particular, we consider the stability of duals and approximate duals under bounded operators and we study duals and approximate duals of g-frames in the direct sum of Hilbert spaces. We also obtain some results for perturbations of approximate duals.
متن کامل$G$-dual Frames in Hilbert $C^{*}$-module Spaces
In this paper, we introduce the concept of $g$-dual frames for Hilbert $C^{*}$-modules, and then the properties and stability results of $g$-dual frames are given. A characterization of $g$-dual frames, approximately dual frames and dual frames of a given frame is established. We also give some examples to show that the characterization of $g$-dual frames for Riesz bases in Hilbert spaces is ...
متن کاملA characterization of L-dual frames and L-dual Riesz bases
This paper is an investigation of $L$-dual frames with respect to a function-valued inner product, the so called $L$-bracket product on $L^{2}(G)$, where G is a locally compact abelian group with a uniform lattice $L$. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for $L$-dual frames and $L$-dual Riesz bases in $L^{2}(G)$.
متن کاملSome Properties of Continuous $K$-frames in Hilbert Spaces
The theory of continuous frames in Hilbert spaces is extended, by using the concepts of measure spaces, in order to get the results of a new application of operator theory. The $K$-frames were introduced by G$breve{mbox{a}}$vruta (2012) for Hilbert spaces to study atomic systems with respect to a bounded linear operator. Due to the structure of $K$-frames, there are many differences between...
متن کامل